Antimicrobial Resistance and COVID-19, what do we know so far?

Caline S. Mattar, M.D
Assistant Professor of Medicine and Global Health
Department of Internal Medicine
Division of Infectious Diseases
Learning Objectives

• Review of optimization of antibiotic use
• Describe processes affected by COVID-19
• Review the available evidence on bacterial infections and COVID-19
A brief review

Figure 1
Integrated approach to optimizing use of antimicrobials towards universal health coverage
What is happening during this pandemic?

- Many changes in healthcare systems
- Fear, anxiety from patients’ side
- Possible delays in presentation for care
- Changes in supply chains and regulations on export of medical products
- Availability of testing and surveillance
- Decreased access to personal protective equipment
In Summary

Source: WHO Practical toolkit Antimicrobial Stewardship Programmes in Health-Care Facilities in Low- and Middle-Income Countries
During the COVID-19 pandemic

- Supply Chain disruptions
 - Quarantined workers - Closed factories
 - Hardest hit areas - contributions to the antibiotic production

- Regulations
 - Travel restrictions/stay at home orders/curfews etc
 - Restrictions of movement of medical supplies/medicines
During the COVID-19 pandemic

- **Access**
 - Further restricted → out-of-pocket expenses, economic hardships, job losses
 - Public health facilities overwhelmed → purchasing ability decreases → funds

- **Immunizations**
 - Expanded immunizations programs halted
 - Redeployment of staff
 - Vaccine availability drops
During the COVID-19 pandemic

- **Surveillance**
 - Surveillance Programs → stop
 - Testing facilities and labs → repurposed for COVID-19
 - Some molecular testing → same reagents
 - Shortages in reagents, necessary tools etc
 - Human Resources

- **Infection Control and Prevention**
 - Isolation for MDRO stops
 - Lack of isolation supplies → PPE
 - Infection control practitioners → focus shifts towards pandemic
Understanding COVID-19 presentations

- CXR with multifocal opacities
- High fever
- Oxygen requirement
- Shock
- Progressive multi-organ failure

CXR images from twitter Radiology RSNA
Understanding COVID-19 presentations

• Increase in inflammatory markers: CRP, D-Dimer, LDH

• Increase in WBC count (lymphopenia common)

• The longer the hospital stay → increase risk of secondary bacterial infection
A quick review of the literature

- **Lancet:**
 - 191 patients from Wuhan
 - Hospitalized
 - Looking at risk factors and mortality

- SOFA score, D-dimer, lymphocyte count etc

- Secondary infection in 15% of patients but 95% received antibiotics
A quick review of the literature

- NEJM
 - 1099 patients from 3 provinces in China
 - 154 patients with severe disease
 - 58% received antibiotics
 - Culture data missing—hospitals overwhelmed

<table>
<thead>
<tr>
<th>Treatments</th>
<th>No. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intravenous antibiotics</td>
<td>637 (58.0)</td>
</tr>
<tr>
<td>Oseltamivir</td>
<td>393 (35.8)</td>
</tr>
</tbody>
</table>
Issues with the current COVID-19 literature

- Pandemic situation: no rigorous study designs

- Push for rapid publication - sometimes without proper peer-review

- Many articles - retrospective and very small sample sizes
 - Others with the same patients included in more than one study
Proposed way forward

- Concomitant Bacterial infections in COVID-19 patients → exception not the norm

- Critically-ill patients → cautious management

- Some of the proposed therapies for COVID-19 may predispose to secondary bacterial infections

- In patients presenting with shock → diagnostics to prove Bacterial infection + use pro-calcitonin if available

- → Discontinue antibacterials within 48 hours
References and additional readings

Caline S. Mattar, M.D
Assistant Professor of Medicine and Global Health
Campus Box 8051
4523 Clayton Ave
St. Louis, MO 63110
Twitter: @CalineMattar

cmattar@wustl.edu

©2018